>
Starlink Spy Network: Is Elon Musk Setting Up A Secret Backchannel At GSA?
The Worst New "Assistance Technology"
Vows to kill the Kennedy clan, crazed writings and eerie predictions...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
A quantum computing breakthrough by researchers at IBM and Daimler AG, the parent company of Mercedes-Benz, uses a quantum computer to model the dipole moment of three lithium-containing molecules, which brings us one step closer the next-generation lithium sulfur (Li-S) batteries that would be more powerful, longer lasting and cheaper than today's widely used lithium ion batteries.
Simulating molecules is extremely difficult but modeling them precisely is crucial to discover new drugs and materials. In the research paper "Quantum Chemistry Simulations of Dominant Products in Lithium-Sulfur Batteries," we simulated the ground state energies and the dipole moments of the molecules that could form in lithium-sulfur batteries during operation: lithium hydride (LiH), hydrogen sulfide (H2S), lithium hydrogen sulfide (LiSH), and the desired product, lithium sulfide (Li2S). In addition, and for the first time ever on quantum hardware, we demonstrated that we can calculate the dipole moment for LiH using 4 qubits on IBM Q Valencia, a premium-access 5-qubit quantum computer.
Arxiv- Quantum Chemistry Simulations of Dominant Products in Lithium-Sulfur Batteries