>
THE CRYPTO VIGILANTE SUMMIT:
WHAT MATTERS MOST IN CRYPTO
Retarded Or Evil? Leftist Arguments Justifying The Murder Of Charlie Kirk
Charlie Kirk once questioned if Ukraine would try to kill him (VIDEO)
KOL060 | Guest on Ernest Hancock's Declare Your Independence radio show: intellectual property a
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
A quantum computing breakthrough by researchers at IBM and Daimler AG, the parent company of Mercedes-Benz, uses a quantum computer to model the dipole moment of three lithium-containing molecules, which brings us one step closer the next-generation lithium sulfur (Li-S) batteries that would be more powerful, longer lasting and cheaper than today's widely used lithium ion batteries.
Simulating molecules is extremely difficult but modeling them precisely is crucial to discover new drugs and materials. In the research paper "Quantum Chemistry Simulations of Dominant Products in Lithium-Sulfur Batteries," we simulated the ground state energies and the dipole moments of the molecules that could form in lithium-sulfur batteries during operation: lithium hydride (LiH), hydrogen sulfide (H2S), lithium hydrogen sulfide (LiSH), and the desired product, lithium sulfide (Li2S). In addition, and for the first time ever on quantum hardware, we demonstrated that we can calculate the dipole moment for LiH using 4 qubits on IBM Q Valencia, a premium-access 5-qubit quantum computer.
Arxiv- Quantum Chemistry Simulations of Dominant Products in Lithium-Sulfur Batteries