>
Playing With Browsers to Find Google's Kryptonite
$349 165Ah Redodo Battery Teardown: The Company Responds!
Joel Salatin: Alternative Chicken Feed
Aptera's Solar EV Is Finally Ready For Production. Watch The Livestream Here
In-Wheel EV Hub Motors Could Be A Game-Changer. Why Aren't They Here Yet?
Mars Terraforming Within 40 Years for Plants and No Spacesuits
See-Through the Future of Display
$849 Wattcycle Server Rack Battery?! Quick Review...
After Trump Threatened Apple, His Sons Announce a Made-in-America Phone
"We're Not Ready for AI Simulation" | Official Preview
$839 Ecoworthy Version 3: Best Value 48V Battery for 2025?
Feature-packed portable learning lab for makers puts AI within reach
Hydrogen is viewed by many folks, particularly in Japan and Korea, as the clean-burning fuel that might power our vehicles in a low-emissions future. One way to produce hydrogen is to split it out of water. This is typically done by splitting water molecules into hydrogen and oxygen using electricity, but a potentially simpler and more efficient way to do it may be through photocatalytic water splitting, which uses light itself as the energy source instead of electricity, removing electricity production from the process altogether.
Nobody has yet managed to commercialize photocatalytic hydrogen production, but it's a hot area of research, and this OSU team claims it's discovered one of the most efficient photocatalytic molecules to date.
The molecule has shown a unique ability to use light from right across the visible spectrum. Where most previous photocatalysts have focused on high-energy ultraviolet wavelengths, this one can capture energy from ultraviolet, all the way through the visible spectrum and well into the near infrared range, meaning it can absorb up to 50 percent more solar energy than current solar cells.