>
Arrested and charged with 17 first-degree felony counts for forging vax records for 8 children,...
VAERS data on all vaccine deaths from 1988 to 2021.
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
Massie Bill Demands Federal Candidates Reveal Dual Citizenship
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
They could completely erase the Achilles heel of electric vehicles – their slow charging times – if they could hold more energy. And now Chinese and British scientists say they've figured out a way to store 10 times more energy per volume than previous supercapacitors.
A team split between University College London and the Chinese Academy of Sciences has released a study and proof of concept of a new supercapacitor design using graphene laminate films and concentrating on the spacing between the layers, the researchers discovering that they could radically boost energy density when they tailored the sizes of pores in the membranes precisely to the size of electrolyte ions.
Using this design, the team says it's achieved a massive increase in volumetric energy density. Where "similar fast-charging commercial technology" tends to offer around 5-8 watt-hours per liter, this new design has been tested at a record 88.1 Wh/l. The team claims it's "the highest ever reported energy density for carbon-based supercapacitors."
That figure is toward the high end of what a typical lead-acid battery stores, but while lead-acid batteries charge very slowly and offer fairly low power density, the supercapacitors can charge very, very quickly and offer massive power densities around 10 kilowatts per liter.