>
The Decline Of Boys Participating In Youth Sports Has Led To A Generation Of Soft...
First Arrests Hint At How Billions In California Homeless Dollars Vanished...
Trump Refiles $15 Billion Defamation Lawsuit Against New York Times After Court Dismissal
Can Diet-Changes Really Transform ADHD? One Family's Remarkable Discovery
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
Above -A silicon qubit high-frequency measurement stage, which is positioned inside a dilution refrigerator to cool the chip to around 0.1 degrees above absolute zero. Picture: UNSW/Ken Leanfore
UNSW Sydney have created artificial atoms in silicon chips that offer improved stability for quantum computing.
In a paper published today in Nature Communications, UNSW quantum computing researchers describe how they created artificial atoms in a silicon 'quantum dot', a tiny space in a quantum circuit where electrons are used as qubits (or quantum bits), the basic units of quantum information.
The results experimentally demonstrate that robust spin qubits can be implemented in multielectron quantum dots up to at least the third valence shell. Their utility indicates that it is not necessary to operate quantum dot qubits at single-electron occupancy, where disorder can degrade their reliability and performance. Furthermore, the larger size of multielectron wavefunctions combined with EDSR can enable higher control fidelities, and should also enhance exchange coupling between qubit.