>
3D-printed skin could replace animal testing for cosmetics
SpaceX Starship Next Day Package Delivery Economics
Tesla Optimus Has Improved Walking and Actuators
Shelved Movie 'Wile E. Coyote vs. Acme' Will Finally Hit Screens with a Hilarious Plotline
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
Above -A silicon qubit high-frequency measurement stage, which is positioned inside a dilution refrigerator to cool the chip to around 0.1 degrees above absolute zero. Picture: UNSW/Ken Leanfore
UNSW Sydney have created artificial atoms in silicon chips that offer improved stability for quantum computing.
In a paper published today in Nature Communications, UNSW quantum computing researchers describe how they created artificial atoms in a silicon 'quantum dot', a tiny space in a quantum circuit where electrons are used as qubits (or quantum bits), the basic units of quantum information.
The results experimentally demonstrate that robust spin qubits can be implemented in multielectron quantum dots up to at least the third valence shell. Their utility indicates that it is not necessary to operate quantum dot qubits at single-electron occupancy, where disorder can degrade their reliability and performance. Furthermore, the larger size of multielectron wavefunctions combined with EDSR can enable higher control fidelities, and should also enhance exchange coupling between qubit.