>
Active Shooter in Tactical Gear Storms Border Patrol Station in Texas--Cops Neutralize Attacker
Benjamin Franklin and the Self-Made Man: Making America
SHOCK REPORT: DOJ, FBI Review Finds NO Jeffrey Epstein 'Client List,' Confirms Suicide - SF6
FBI Concludes Jeffrey Epstein Had No Clients, Didn't Blackmail Anyone, And Definitely Killed Him
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
Above -A silicon qubit high-frequency measurement stage, which is positioned inside a dilution refrigerator to cool the chip to around 0.1 degrees above absolute zero. Picture: UNSW/Ken Leanfore
UNSW Sydney have created artificial atoms in silicon chips that offer improved stability for quantum computing.
In a paper published today in Nature Communications, UNSW quantum computing researchers describe how they created artificial atoms in a silicon 'quantum dot', a tiny space in a quantum circuit where electrons are used as qubits (or quantum bits), the basic units of quantum information.
The results experimentally demonstrate that robust spin qubits can be implemented in multielectron quantum dots up to at least the third valence shell. Their utility indicates that it is not necessary to operate quantum dot qubits at single-electron occupancy, where disorder can degrade their reliability and performance. Furthermore, the larger size of multielectron wavefunctions combined with EDSR can enable higher control fidelities, and should also enhance exchange coupling between qubit.