>
The Paradox of Mamdani's Paradise
Stomach Acid Is Vital for Health
Nancy Pelosi to Retire. Her Net Worth Surged 2,297% Since First Taking Office 38 Years Ago
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?

It was part of the 2019 Interstellar Symposium. The workshop focused on physics-based propulsion technologies that have the potential to meet the goal of launching an interstellar probe within the next century and achieving .1c transit velocity: Beamed Energy Propulsion, Fusion, and Antimatter.
The state-of-the-art of each was examined, and competing approaches to advancing the Technology Readiness Level (TRL) were presented and assessed for synthesis into a report that will serve as the blueprint for possible future interstellar propulsion technology development.
Geoffrey Landis looked at providing power for communication for an interstellar probe that weighs a couple of grams. He looks at using a system to generate power from a system that has been accelerated to 10-20% of the speed of light. The probe would interact with the interstellar plasma and with magnetic fields of the target solar system.