>
Wise words (Elon Musk responding to Ron Paul's tweet on the Big Beautiful Bill)
People Are Being Involuntarily Committed, Jailed After Spiraling Into "ChatGPT Psychosis"
Dr. Lee Merritt: What You Need to Know About Parasites and Biowarfare
How We Manage a Garden With 11 Kids (2025 Garden Tour)
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
It was part of the 2019 Interstellar Symposium. The workshop focused on physics-based propulsion technologies that have the potential to meet the goal of launching an interstellar probe within the next century and achieving .1c transit velocity: Beamed Energy Propulsion, Fusion, and Antimatter.
The state-of-the-art of each was examined, and competing approaches to advancing the Technology Readiness Level (TRL) were presented and assessed for synthesis into a report that will serve as the blueprint for possible future interstellar propulsion technology development.
Geoffrey Landis looked at providing power for communication for an interstellar probe that weighs a couple of grams. He looks at using a system to generate power from a system that has been accelerated to 10-20% of the speed of light. The probe would interact with the interstellar plasma and with magnetic fields of the target solar system.