>
Tulsi Gabbard Exposes Alarming Biden-Era 'Domestic Terrorism' Strategy
"Levitating Diamonds Reach Impossible Speed":
Talons From The Sky: Coiled Scales On The Ground
If You Could Destroy America: How Would You Do It?
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Scientists at the National Renewable Energy Laboratory (NREL) have fabricated a solar cell with an efficiency of nearly 50%.
For perspective, the average solar cell has an efficiency rate of 15% to 20%, meaning it's capable of converting just a small fraction of absorbed sunlight into electricity.
The newly-developed six-junction solar cell, however, now holds the world record for the highest solar conversion efficiency at 47.1%, which was measured under concentrated illumination. A variation of the same cell also set the efficiency record under one-sun illumination at 39.2%.
"This device really demonstrates the extraordinary potential of multijunction solar cells," said John Geisz, a principal scientist in the High-Efficiency Crystalline Photovoltaics Group at NREL and lead author of a new paper on the record-setting cell.
The paper appeared in the journal Nature Energy this week.
To construct the device, NREL researchers relied on III-V materials—so called because of their position on the periodic table—that have a wide range of light absorption properties. Each of the cell's six junctions (the photoactive layers) is specially designed to capture light from a specific part of the solar spectrum.
The device contains about 140 total layers of various III-V materials to support the performance of these junctions, and yet is three times narrower than a human hair. Due to their highly efficient nature and the cost associated with making them, III-V solar cells are most often used to power satellites, which prize III-V's unmatched performance.
On Earth, however, the six-junction solar cell is well-suited for use in concentrator photovoltaics, said Ryan France, co-author and a scientist in the III-V Multijunctions Group at NREL.