>
The #1 Most Dangerous Fat in the World!
Is $140K the New Poverty Line? Is This the End of America's Middle Class?
Here Are the NEWLY RELEASED Epstein Images Tied to Powerful Democrats
Joe Biden Still Struggling to Raise Money for Presidential Library – No New Donations...
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer
Advanced Propulsion Resources Part 1 of 2
PulsarFusion a forward-thinking UK aerospace company, is pushing the boundaries of space travel...
Dinky little laser box throws big-screen entertainment from inches away
'World's first' sodium-ion flashlight shines bright even at -40 ºF

This will subsequently require a reduction in operating temperatures and reduce the total power levels achievable by the core. However, the reduced mass will require reduced power for propulsion, resulting in a small, inexpensive nuclear electric spacecraft.
The ATEG system they previously proposed would have 15,000 watts of thermal energy about 3000 watts of electrical energy. The best RTG that NASA has flown was about 300 watts. GPHS-RTG or General Purpose Heat Source — Radioisotope Thermoelectric Generator, was used on Ulysses, Galileo, Cassini-Huygens, and New Horizons missions. The GPHS-RTG has an overall diameter of 0.422 m and a length of 1.14 m. Each GPHS-RTG has a mass of about 57 kg and generates about 300 Watts of electrical power at the start of mission (5.2 We/kg), using about 7.8 kg of Pu-238 which produces about 4,400 Watts of thermal power.