>
What really happens to your bag after you check it in?
New LITHIUM METAL battery DOUBLES energy capacity! Has CHINA beaten us to it AGAIN?
Your Body's Urgently Trying to Tell You Something
Neuroscientists just found a hidden protein switch in your brain that reverses aging and memory loss
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
Can a solid-state battery be considered as such if its solid layers are anointed with a butter-like material? For scientists from four different universities, that can be the answer to making these batteries more stable and ten times more current dense, as a study published at Advanced Functional Materials has revealed.
The butter-like material is far from any dairy product: it is a combination of ionic liquid electrolyte and LAGP (Li1.5Al0.5Ge1.5(PO4)3) nanoparticles. The magic happens when it is placed between the solid electrolyte – made of NASICON – and the lithium anode.
NASICON is the acronym for sodium (Na) Super Ionic CONductor. It is one of the most promising solid electrolytes for solid-state batteries because its conductivity can match that of liquid electrolytes.
The biggest issue with NASICON is that it does not go very well with a lithium metal anode. When they are directly in touch, the result is a chemically unstable interface. That is why researchers from Chalmers University of Technology, Xi'an Jiaotong University, the Technical University of Denmark, and the National University of Defense Technology joined forces to develop the "spreadable interlayer."
In an effort to make this easier to understand, the researchers compared the solid-state battery to a very dry sandwich. Like mayonnaise, the "quasi-solid-state-paste" brings harmony to the elements and keeps them together.