>
China opens Peru 'bathing base' port to fight Trump in trade war
UK government set for crypto regulations next year, officials says
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
A team at Idaho National Laboratory in collaboration with groups at Argonne and Oak Ridge national laboratories, as well as industry consultants and international partners, has for the first time in 30 years gotten a new material, Alloy 617, into the Boiler and Pressure Vessel Code. A combination of nickel, chromium, cobalt and molybdenum, Alloy 617 can be used in tomorrow's advanced nuclear plants because it allows higher temperature operation.
Oak Ridge National Labs is developing 3D printing of a nuclear reactor core using Alloy 617. The previously allowed high temperature materials could not be used above about 750o C (around 1,380o F). The new Alloy 617 can be used in design and construction up to 950o C [about 1,750o F]. This will enable new higher temperature concepts.
The achievement means that designers working on new high temperature nuclear power plant concepts now have 20% more options when it comes to component construction materials.