>
Historians Debate Ukraine War As WWIII Risk Mounts: Niall Ferguson Vs Scott Horton
Marc Andreessen Describes "Alarming" Meeting With Biden Admin That Prompted His Trump Endo
Five Ways You Might Already Encounter AI in Cities (and not realise it)
NASA Underwater Robots to Search for Life on Moons With Oceans Like Europa
New SpaceX Starship Block 2 Design Flying in January and Block 3 One Year Later
Fast-charging lithium-sulfur battery for eVTOLs nears production
Wireless ultrasonic cutter is truly a jack of all trades
CFMoto's electric motocross set to bring an e-dirt bike revolution
Five Unmanned SpaceX Starships to Mars in 2026 with Thousands of Teslabots
Implants made of your blood could repair broken bone
NASA awards $11.5 million to help design the aircraft of tomorrow
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
On earth, a photovoltaic solar plant producing about one 1 GWh per year, will require around 2.8 acres of land. The moon has no atmosphere, so a 300-watt panel on Earth would produce 400 watts on the moon.
A GWh could be produced using 2 acres of land on the moon. An acre is 43,560 square feet (180 feet X 242 feet). In the SpaceX picture, it looks like they have solar panels on 200 acres. This would be about 100 GWh per year.
A rule of thumb on earth is 1kW per 100 square feet. On the moon with higher efficiency panels and better sunlight it could be 2 kW per 100 square feet. 200 acres would be about 170 megawatts. This could be 200 GWh per year. If the moon base solar power was six times bigger then it would be over 1 gigawatt of power. This would be 1200 acres or just under two square miles.
The system could weight 1 kilogram per kilowatt. In 2015, space-based solar power was 6.7 kilograms per kilowatt. The weight efficiency is being improved and simple lunar materials could be used to make some of the structures. This would mean transporting 1000 tons of material for a gigawatt of solar power on the moon. This would be ten refueled Starship landings for the main solar power systems and another five for construction machinery and other systems. There could another five Starship landings to provide batteries.