>
Newsom Folds, Greenlights Domestic Oil Production In California
Jimmy Kimmel Suspended 'Indefinitely' After Pushing Charlie Kirk Propaganda
Explosive-Laden Robots Pour Into Gaza City: 'More Devastating Than Airstrikes'
Psychology Course Introduction - OpenSourceEducation
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
On earth, a photovoltaic solar plant producing about one 1 GWh per year, will require around 2.8 acres of land. The moon has no atmosphere, so a 300-watt panel on Earth would produce 400 watts on the moon.
A GWh could be produced using 2 acres of land on the moon. An acre is 43,560 square feet (180 feet X 242 feet). In the SpaceX picture, it looks like they have solar panels on 200 acres. This would be about 100 GWh per year.
A rule of thumb on earth is 1kW per 100 square feet. On the moon with higher efficiency panels and better sunlight it could be 2 kW per 100 square feet. 200 acres would be about 170 megawatts. This could be 200 GWh per year. If the moon base solar power was six times bigger then it would be over 1 gigawatt of power. This would be 1200 acres or just under two square miles.
The system could weight 1 kilogram per kilowatt. In 2015, space-based solar power was 6.7 kilograms per kilowatt. The weight efficiency is being improved and simple lunar materials could be used to make some of the structures. This would mean transporting 1000 tons of material for a gigawatt of solar power on the moon. This would be ten refueled Starship landings for the main solar power systems and another five for construction machinery and other systems. There could another five Starship landings to provide batteries.