>
New battery idea gets lots of power out of unusual sulfur chemistry
Next Issue Of The Wild Bunch: AI Threats Patriots Should Prepare For
A Mortician Explains Why This Photo Doesn't Make Sense
Unseen Danger of Wireless Tech
Kawasaki's four-legged robot-horse vehicle is going into production
The First Production All-Solid-State Battery Is Here, And It Promises 5-Minute Charging
See inside the tech-topia cities billionaires are betting big on developing...
Storage doesn't get much cheaper than this
Laser weapons go mobile on US Army small vehicles
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Using the plentiful element as a lithium-ion battery's anode could significantly improve its energy density, and scientists in Korea have now come up with a solution to one of the key hurdles standing in its way.
Today's lithium-ion batteries use graphite as the material for the anode, the positively-charged electrode that works with the negatively charged cathode to shuttle the lithium ions back and forth during charging. While these batteries are capable of powering today's mobile phones and electric cars, swapping the graphite for silicon, which can store four times the amount of lithium ions, could lead to phones that last for days or cars that travel hundreds of miles further on each charge.
But working silicon into a lithium-ion battery that makes the most of this potential has proven problematic. One of the issues scientists have been working to solve is the rapid decline in capacity, with silicon-based anodes shedding more than 20 percent of their lithium ions just during the initial charging cycle.
One of the ways that this could be overcome is through a technique known as "lithium pre-loading," where extra lithium is added before the battery is assembled to make up for the losses during cycling. Often this is attempted through the use of lithium powders, though this is expensive and brings safety risks.