>
WATCH: Russia Downs Drone With Laser - Is This The Future Of Drone Defense?
What on earth is Trump up to regarding Ozempic?
Charged with 7 Counts of Espionage for the TRUTH | John Kiriakou
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Using the plentiful element as a lithium-ion battery's anode could significantly improve its energy density, and scientists in Korea have now come up with a solution to one of the key hurdles standing in its way.
Today's lithium-ion batteries use graphite as the material for the anode, the positively-charged electrode that works with the negatively charged cathode to shuttle the lithium ions back and forth during charging. While these batteries are capable of powering today's mobile phones and electric cars, swapping the graphite for silicon, which can store four times the amount of lithium ions, could lead to phones that last for days or cars that travel hundreds of miles further on each charge.
But working silicon into a lithium-ion battery that makes the most of this potential has proven problematic. One of the issues scientists have been working to solve is the rapid decline in capacity, with silicon-based anodes shedding more than 20 percent of their lithium ions just during the initial charging cycle.
One of the ways that this could be overcome is through a technique known as "lithium pre-loading," where extra lithium is added before the battery is assembled to make up for the losses during cycling. Often this is attempted through the use of lithium powders, though this is expensive and brings safety risks.