>
FULL REPLAY: President Trump Delivers an Address to the Nation - 12/17/25
MELANIA, the film, exclusively in theaters worldwide on January 30th, 2026.
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer
Advanced Propulsion Resources Part 1 of 2
PulsarFusion a forward-thinking UK aerospace company, is pushing the boundaries of space travel...
Dinky little laser box throws big-screen entertainment from inches away
'World's first' sodium-ion flashlight shines bright even at -40 ºF
Using the plentiful element as a lithium-ion battery's anode could significantly improve its energy density, and scientists in Korea have now come up with a solution to one of the key hurdles standing in its way.
Today's lithium-ion batteries use graphite as the material for the anode, the positively-charged electrode that works with the negatively charged cathode to shuttle the lithium ions back and forth during charging. While these batteries are capable of powering today's mobile phones and electric cars, swapping the graphite for silicon, which can store four times the amount of lithium ions, could lead to phones that last for days or cars that travel hundreds of miles further on each charge.
But working silicon into a lithium-ion battery that makes the most of this potential has proven problematic. One of the issues scientists have been working to solve is the rapid decline in capacity, with silicon-based anodes shedding more than 20 percent of their lithium ions just during the initial charging cycle.
One of the ways that this could be overcome is through a technique known as "lithium pre-loading," where extra lithium is added before the battery is assembled to make up for the losses during cycling. Often this is attempted through the use of lithium powders, though this is expensive and brings safety risks.