>
Israel loyalists OWN our media now
The Fake Left-Right Paradigm - What is the REAL Political Spectrum the Monopoly Media is Hiding?
BlackRock & Blackstone Are Buying Local Power Companies
According to StockMarket.news, the same trader who made $192M last week thanks to almost...
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
If you want to make a far-away look of longing come into a medieval sword enthusiast's eyes, just mention Damascus steel. Originally referring to a kind of steel made from ingots of Wootz steel that came from India over two thousand years ago and was manufactured or traded in Damascus, it now refers to a whole class of steel marked by sinuous, wavy, light and dark banding patterns that resemble flowing water.
Because Wootz steel is no longer available, making true Damascus steel is now a lost art, but not for the want of many scientists and craftsmen trying to reverse-engineer the existing examples. However, the basic idea behind it is very well understood and if you go to a modern Renaissance faire you're likely to find many reproduction blades of surprisingly high quality for sale at the swordsmith's booth.
A Damascus steel blade is made by taking bands of iron and steel, heating them to red hot, and twisting them together. Then the smith hammers them out, reheats, retwists, and rehammers until the intricate, flowing pattern emerges. The result is a worked steel that the smith can control the properties of by controlling the carbon content, creating a tough, flexible steel for a sword's core and then welding on another steel that's been worked to be stiff and hard and can be sharpened to form the blade edges.