>
Playing With Browsers to Find Google's Kryptonite
$349 165Ah Redodo Battery Teardown: The Company Responds!
Joel Salatin: Alternative Chicken Feed
Aptera's Solar EV Is Finally Ready For Production. Watch The Livestream Here
In-Wheel EV Hub Motors Could Be A Game-Changer. Why Aren't They Here Yet?
Mars Terraforming Within 40 Years for Plants and No Spacesuits
See-Through the Future of Display
$849 Wattcycle Server Rack Battery?! Quick Review...
After Trump Threatened Apple, His Sons Announce a Made-in-America Phone
"We're Not Ready for AI Simulation" | Official Preview
$839 Ecoworthy Version 3: Best Value 48V Battery for 2025?
Feature-packed portable learning lab for makers puts AI within reach
In just 10 years or so, perovskite solar cells have advanced so fast that they've more or less caught up to silicon's several-decade head start, reaching efficiencies of around 20 percent. But the advantage is that perovskite is cheaper and easier to produce in bulk, and it can be printed or sprayed directly onto surfaces.
But there's always a catch, and in this case that's stability. Perovskite is vulnerable to being degraded by ions coming from the metal oxide electrodes in the solar cell. But now engineers at Ulsan National Institute of Science and technology (UNIST) in South Korea have found a way to protect the perovskite, and the secret ingredient is everyone's favorite wonder material, graphene.
Graphene is a two-dimensional lattice of carbon atoms, which is transparent, super strong and electrically conductive. That makes it perfect for this purpose – it allows photons of light and electrons to pass through, but blocks metal ions.
The team's new system is made using what they call a graphene copper grid-embedded polyimide (GCEP), which sits between the metal electrode and the perovskite. This layer allows sunlight to pass through to the perovskite to convert the energy to electrons, which are then passed back through the GCEP to the metal electrode and out to be stored and used.
In tests, the researchers showed that the new design was almost as efficient as the regular kind. Solar cells protected by the "graphene armor" had power conversion efficiencies of 16.4 percent, compared to 17.5 percent for those without. It managed to maintain that for long periods too, retaining more than 97.5 percent of that efficiency after 1,000 hours.