>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
In just 10 years or so, perovskite solar cells have advanced so fast that they've more or less caught up to silicon's several-decade head start, reaching efficiencies of around 20 percent. But the advantage is that perovskite is cheaper and easier to produce in bulk, and it can be printed or sprayed directly onto surfaces.
But there's always a catch, and in this case that's stability. Perovskite is vulnerable to being degraded by ions coming from the metal oxide electrodes in the solar cell. But now engineers at Ulsan National Institute of Science and technology (UNIST) in South Korea have found a way to protect the perovskite, and the secret ingredient is everyone's favorite wonder material, graphene.
Graphene is a two-dimensional lattice of carbon atoms, which is transparent, super strong and electrically conductive. That makes it perfect for this purpose – it allows photons of light and electrons to pass through, but blocks metal ions.
The team's new system is made using what they call a graphene copper grid-embedded polyimide (GCEP), which sits between the metal electrode and the perovskite. This layer allows sunlight to pass through to the perovskite to convert the energy to electrons, which are then passed back through the GCEP to the metal electrode and out to be stored and used.
In tests, the researchers showed that the new design was almost as efficient as the regular kind. Solar cells protected by the "graphene armor" had power conversion efficiencies of 16.4 percent, compared to 17.5 percent for those without. It managed to maintain that for long periods too, retaining more than 97.5 percent of that efficiency after 1,000 hours.