>
Wise words (Elon Musk responding to Ron Paul's tweet on the Big Beautiful Bill)
People Are Being Involuntarily Committed, Jailed After Spiraling Into "ChatGPT Psychosis"
Dr. Lee Merritt: What You Need to Know About Parasites and Biowarfare
How We Manage a Garden With 11 Kids (2025 Garden Tour)
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
A research team from the US Army and the University of Rochester is throwing a new possibility into the mix, showing off a "superwicking" aluminum panel that uses solar power to purify water with great efficiency.
Solar power has proven a popular choice when it comes to powering low-cost water purifiers, with sunlight long known to destroy waterborne pathogens. We have looked at quite a few technologies over the years that leverage this process to produce clean water through low-cost and portable platforms, but the researchers behind the latest system say it offers an entirely new level of efficiency.
The technology begins with a regular aluminum panel, which is treated with ultrashort femtosecond laser pulses to produce an open-grooved surface that is pitch black. This makes the material highly absorptive and "super-wicking," enabling it to draw a thin film of water from a reservoir up over the metal's surface, even against the forces of gravity.
While this is going on, the pitch black material gathers energy from the sun and is able to retain nearly all of it to heat up the water. The structures etched into wicking surface then alter the molecular bonds in the water, increasing the efficiency of the evaporation process that rids it of its contaminants.