>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
The technological advances demonstrate a PET/MRI approach to locate specific locations of chronic pain in a patient, and a new full-body scanner that can visualize the complete systemic burden of inflammatory arthritis for the very first time.
Tens of millions of Americans suffer from chronic pain, yet outside of subjective patient responses there are very few diagnostic tools available to objectively evaluate its location or severity. A new study led by researchers from Stanford University School of Medicine has demonstrated a novel PET/MRI imaging method that can pinpoint the exact location of chronic pain in a patient.
"In the past few decades, we have confirmed that anatomic-based imaging approaches, such as conventional MRI, are unhelpful in identifying chronic pain generators," says Sandip Biswal, one of the researchers on the project. "We know that 18F-FDG PET has the ability to accurately evaluate increased glucose metabolism that arises from acute or chronic pain generators. As such, in our study we examined PET/MRI as a potential solution to determine the exact molecular underpinnings of one's pain."
The study recruited 65 subjects with chronic pain and conducted a full body PET/MRI scan using 18F-FDG tracers to home in on particular locations where glucose uptake in tissue is heightened. The novel imaging technology effectively zeroed in on specific pain locations in 58 of the subjects. The new clinical information subsequently resulted in changes to pain management plans for 40 of those subjects.