>
China's Nightmarish New Bio Weapon Targets Race and Ethnicity
The Epstein Files Just EXPOSED the AI Mind Control Agenda (2026 Warning)
Maxwell offers testimony if granted Trump clemency
How RFK Jr's Guidelines Could Change Farming - Joel Salatin
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

The researchers have succeeded in transferring the properties of highly fluorescent dyes to solid optical materials, opening up new possibilities in everything from the development of next-generation solar cells to advanced lasers.
The research was carried out by scientists at Indiana University and the University of Copenhagen, who set out to solve a 150-year-old problem involving fluorescent dyes. The problem is known as "quenching" and occurs when dyes are converted to solid states, which causes them to bunch up tightly and become electronically coupled, dulling their fluorescent glow. This issue of quenching plagues the great majority of the more than 100,000 dyes that exist today.
"The problem of quenching and inter-dye coupling emerges when the dyes stand shoulder-to-shoulder inside solids," says study author Amar Flood, a chemist at Indiana University. "They cannot help but 'touch' each other. Like young children sitting at story time, they interfere with each other and stop behaving as individuals."
Flood and his colleagues believe they have found a solution to this problem, through the use of star-shaped macrocycle molecule that stops the fluorescent molecules from interacting with one another.