>
What ACTUALLY Happens When You Pour Vinegar in a Washing Machine?!
3 New Laws Just Reversed Silver Stacking (never the same)
A Ridiculously Easy Way to Clean the INSIDE of Your Windshield (NO Haze or Streaks)
FDA Quietly Approved THIS in Your Food (And You're Eating It Daily)
First totally synthetic human brain model has been realized
Mach-23 potato gun to shoot satellites into space
Blue Origin Will Increase New Glenn Thrust 15-25% and Make Rocket Bigger
Pennsylvania Bill – 'Jetsons Act' – Aims To Green-Light Flying Cars
New Gel Regrows Dental Enamel–Which Humans Cannot Do–and Could Revolutionize Tooth Care
Researchers want to drop lab grown brains into video games
Scientists achieve breakthrough in Quantum satellite uplink
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era

The researchers have succeeded in transferring the properties of highly fluorescent dyes to solid optical materials, opening up new possibilities in everything from the development of next-generation solar cells to advanced lasers.
The research was carried out by scientists at Indiana University and the University of Copenhagen, who set out to solve a 150-year-old problem involving fluorescent dyes. The problem is known as "quenching" and occurs when dyes are converted to solid states, which causes them to bunch up tightly and become electronically coupled, dulling their fluorescent glow. This issue of quenching plagues the great majority of the more than 100,000 dyes that exist today.
"The problem of quenching and inter-dye coupling emerges when the dyes stand shoulder-to-shoulder inside solids," says study author Amar Flood, a chemist at Indiana University. "They cannot help but 'touch' each other. Like young children sitting at story time, they interfere with each other and stop behaving as individuals."
Flood and his colleagues believe they have found a solution to this problem, through the use of star-shaped macrocycle molecule that stops the fluorescent molecules from interacting with one another.