>
Tucker Carlson on Why He Interviewed Nick Fuentes and What He Wanted to Convey To Him
The Global War on Christianity Just Got a Whole Lot Worse, and Ted Cruz Doesn't Care
BREAKING EXCLUSIVE: The Globalists Are Trying To Trigger Stock Market Crash Worse Than 1929...
ICE's 'Frightening' Facial Recognition App is Scanning US Citizens Without Their Consent
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028

As renewable energy generation grows, so does the need for new storage methods that can be used at times when the Sun isn't shining or the wind isn't blowing. A Scottish company called Gravitricity has now broken ground on a demonstrator facility for a creative new system that stores energy in the form of "gravity" by lifting and dropping huge weights.
If you coil a spring, you're loading it with potential energy, which is released when you let it go. Gravitricity works on the same basic principle, except in this case the springs are 500- to 5,000-tonne weights. When held aloft by powerful cables and winches, these weights store large amounts of potential energy. When that energy is needed, they can be lowered down a mineshaft to spin the winch and feed electricity into the grid.
Gravitricity says that these units could have peak power outputs of between 1 and 20 MW, and function for up to 50 years with no loss of performance. Able to go from zero to full power in under a second, the system can quickly release its power payload in as little as 15 minutes or slow it down to last up to eight hours.
To recharge this giant mechanical battery, electricity from renewable sources power the winches to lift the weights back to the top. In all, the system has an efficiency of between 80 and 90 percent.
Ultimately, this kind of system should be able to store energy at a lower cost than other grid-scale energy storage systems, such as Tesla's huge lithium-ion battery in Australia. The concept sounds very similar to the one behind Energy Vault, which uses a crane to hoist concrete blocks into a tower.