>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Georgia Tech aims to reduce the Entry Descent Landing (EDL) mass of a crewed mission to Mars by approximately 7 tons. This technology will enable long-term human presence on Mars and beyond because costly propellant deliveries from Earth would be unnecessary. They will genetically engineer algae to efficiently convert the abundant CO2 in the Martian atmosphere into liquid hydrocarbons suitable for rocket propulsion and other energy needs on Mars. The proposed system grows algae biofilms that consume atmospheric CO2 and sunlight with minimal water resources.
The algae then provide a food source to the genetically optimized organisms/microbes, which are engineered to produce a monomer with ideal combustion behavior and liquid properties. These monomers would be used in a pump-fed LOX/monomer propellant combination to power a human-crewed Mars Ascent Vehicle (MAV). They will focus on the production of C3-C4 diols, which have low melting points (less than -36ÂșC) for use as a liquid on Mars, and optimal energy content (over 14MJ/L), to provide the minimum thrust needed for ascent from Mars.
The chemical and physical properties, and energy density of these monomers suggest that they are capable of sufficient energy conversion through combustion for a crewed launch from Mars, making them excellent candidates for an ISRU rocket propellant. They are also liquid over a wide range of typical Mars temperatures, making them non-cyrogenic and storage stable. The oxygen atoms in the designed monomer will also enable a cleaner burn than conventional hydrocarbon propellants, supporting the reuse of rocket engines for multimission and interplanetary trips. Our approach will test the thermo-physical-chemical properties and combustion behavior of a suite of monomer rocket propellant candidates, while simultaneously developing the biological system for synthesizing them on Mars. By working together and in parallel, we will efficiently integrate testing feedback to quickly arrive at a co-optimized ISRU LOX/monomer rocket propellant. In total, these advantages will reduce infrastructure and resources needed to support human missions to Mars, and future, more ambitious efforts to expand human presence throughout the solar system.