>
Hard To See How EU Can Strike A Deal, Without Writing A Check
Trump Set To Sign Exec Order Boosting Domestic Coal To Meet AI Power Demands
The Gold Standard Is Back - Stablecoins Need To Rethink What 'Backing' Really Means
Stocks Erase Early Gains As White House Pulls Trigger On 104% China Tariffs
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Described in a paper published in the journal Physical Review E, the findings prove a theory the physicists developed at the U of A three yeas ago. This theory stated that freestanding graphene – a single layer of carbon atoms – ripples and buckles in a way that holds promise for energy harvesting.
"An energy-harvesting circuit based on graphene could be incorporated into a chip to provide clean, limitless, low-voltage power for small devices or sensors," said lead researcher Paul Thibado.
Controversial study challenges existing ideas
The research conducted by the U of A scientists has been rather controversial. The idea that freestanding graphene has potential energy-harvesting capabilities refutes a well-known assertation by physicist Richard Feynman that the thermal motion of atoms, known as Brownian motion, cannot do work.
However, the U of A researchers found that at room temperature, the thermal motion of graphene does induce an alternating current in a circuit – something previously thought impossible. In addition, the researchers found that their design increased the amount of power delivered. They stated that they found that the diodes' switch-like behavior actually amplified the power being delivered instead of reducing it. (Related: Energy from an unlikely source: A combination of microbes and graphene could make inexpensive and eco-friendly energy.)
"We also found that the on-off, switch-like behavior of the diodes actually amplifies the power delivered, rather than reducing it, as previously thought," said Thibado. "The rate of change in resistance provided by the diodes adds an extra factor to the power."
To prove that the diodes increased the circuit's power, the scientists on the project used a relatively new field of physics called stochastic thermodynamics. This field uses a family of stochastic or random variables to better understand the non-equilibrium dynamics present in many microscopic systems.