>
Asia's Collapse Just Set Off a Chain Reaction To The Rest of The World
Pentagon Prepares for Trump to Go Berserk
Ron Howard, Henry Winkler Share Insight Into Rare Happy Days Reunion | E! News
Kash drops trans school shooter's manifesto--now we know why they buried it…
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
They had 0.86 PetaFLOPS of performance on the single wafer system.
The problem was to solve a large, sparse, structured system of linear equations of the sort that arises in modeling physical phenomena—like fluid dynamics—using a finite-volume method on a regular three-dimensional mesh. Solving these equations is fundamental to such efforts as forecasting the weather; finding the best shape for an airplane's wing; predicting the temperatures and the radiation levels in a nuclear power plant; modeling combustion in a coal-burning power plant; and or making pictures of the layers of sedimentary rock in places likely to contain oil and gas.
The massive speedup was enabled by:
1. The memory performance on the CS-1.
2. The high bandwidth and low latency of the CS-1's on-wafer communication fabric.
3. A processor architecture optimized for high bandwidth computing.
Cerebras CS-1 has the world's largest chip. It is 72 square inches (462 cm2) and the largest square that can be cut from a 300 mm wafer. The chip is about 60 times the size of a large conventional chip like a CPU or GPU. It provides much-needed breakthrough in computer performance for deep learning.
They have delivered CS-1 systems to customers around the world, where they are providing an otherwise impossible speed boost to leading-edge AI applications in fields ranging from drug design to astronomy, particle physics to supply chain optimization, to name just a few applications.