>
US Lawmakers Shmooze with Zelensky at Munich Security Conference...
Scientists have plan to save the world by chopping down boreal forest...
New Coalition Aims To Ban Vaccine Mandates Across US
New Spray-on Powder Instantly Seals Life-Threatening Wounds in Battle or During Disasters
AI-enhanced stethoscope excels at listening to our hearts
Flame-treated sunscreen keeps the zinc but cuts the smeary white look
Display hub adds three more screens powered through single USB port
We Finally Know How Fast The Tesla Semi Will Charge: Very, Very Fast
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year

The breakthrough is hoped to allow researchers new ways to investigate baby brain activity in natural environments without the need for expensive MRI machines.
"There is a lot we still don't know about how the brain develops, and a big part of the problem is that studying the infant brain is really difficult with traditional scanners," explains Rob Cooper lead on the project from University College London. "As any parent knows, 6-month old babies are very active; they move around all the time and are easily distracted. Using a technique like MRI, the subject has to remain completely still, which is almost impossible with babies unless they are asleep or sedated."
The system presented in the study, published in the journal NeuroImage, is a new generation of wearable caps using high-density diffuse optical tomography technology (HD-DOT). The system is called LUMO, and the prototype tested came from Gowerlabs, a UCL spinoff company.
Each hexagonal tile on the cap contains three LED sources and four sensors. Near-infrared light is used to detect changes in brain oxygenation. Through these changes researchers can effectively map which parts of the brain are actively working in real-time.
The closest imaging method to this new HD-DOT technology currently available to neuroscientists is called functional near-infrared spectroscopy (fNIRS). But fNIRS devices offer limited spatial resolution and can still require bulky headsets. Comparing the new HD-DOT devices to fNIRS measurements, the researchers say this new imaging technology is a dramatic improvement.