>
Oracle Film - the Agenda Official Trailer
That's not conspiracy - that's math. They hoped we would never fact check.
CPS quotas to remove children from their families
Private Equity Plan to Steal Your Home.
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them
China Innovates: Transforming Sand into Paper
Millions Of America's Teens Are Being Seduced By AI Chatbots
Transhumanist Scientists Create Embryos From Skin Cells And Sperm
You've Never Seen Tech Like This
Sodium-ion battery breakthrough: CATL's latest innovation allows for 300 mile EVs
Defending Against Strained Grids, Army To Power US Bases With Micro-Nuke Reactors

The breakthrough is hoped to allow researchers new ways to investigate baby brain activity in natural environments without the need for expensive MRI machines.
"There is a lot we still don't know about how the brain develops, and a big part of the problem is that studying the infant brain is really difficult with traditional scanners," explains Rob Cooper lead on the project from University College London. "As any parent knows, 6-month old babies are very active; they move around all the time and are easily distracted. Using a technique like MRI, the subject has to remain completely still, which is almost impossible with babies unless they are asleep or sedated."
The system presented in the study, published in the journal NeuroImage, is a new generation of wearable caps using high-density diffuse optical tomography technology (HD-DOT). The system is called LUMO, and the prototype tested came from Gowerlabs, a UCL spinoff company.
Each hexagonal tile on the cap contains three LED sources and four sensors. Near-infrared light is used to detect changes in brain oxygenation. Through these changes researchers can effectively map which parts of the brain are actively working in real-time.
The closest imaging method to this new HD-DOT technology currently available to neuroscientists is called functional near-infrared spectroscopy (fNIRS). But fNIRS devices offer limited spatial resolution and can still require bulky headsets. Comparing the new HD-DOT devices to fNIRS measurements, the researchers say this new imaging technology is a dramatic improvement.