>
Junk food's hidden toll: New study reveals it rewires your brain's memory in days
Interview: Prepare for World War III in 2026 (but with a TWIST)
Rich Bitcoiners Are Reportedly Spending BTC on Luxury Holidays: Does This Really Make Sense?
Are Tariffs Good for American Workers?
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
The technique could be a boon for regenerative medicine to treat neurological disorders.
Inflammation is the body's natural response to injury and damage, swelling up to allow better blood flow to the area. It also acts like a "fire alarm" to attract the attention of the immune system to help the healing process, and stem cells are some of the most important responders.
In theory, inflammation could be used to lure these regenerative stem cells to injuries, but of course there are risks. Chronic inflammation underlies conditions like arthritis, multiple sclerosis and Crohn's disease, and has even been linked to cardiovascular diseases, Alzheimer's and depression.
So for the new study, the researchers investigated ways to summon stem cells using inflammation signals without creating further inflammation. The team modified an inflammatory molecule called CXCL12, which had previously been identified as a stem cell attractor. They found that it contains two "pockets" – one that binds to stem cells and one for inflammatory signaling – so they developed a drug that maximizes the binding but minimizes the signaling.
The end result is a drug they call SDV1a, which is designed to be injected almost anywhere in the body to lure stem cells there to begin healing an injury, without causing inflammation.