>
Eudaimonia: That Perfect Instant While Pedaling Your Bicycle
CHEMTRAIL WARFARE: Tom Renz Exposes the Military's SECRET Chemical Attacks on Americans
Founder Klaus Schwab to step down as World Economic Forum's chair
POWERFUL FRIDAY BROADCAST: Trump Goes On Total Warpath! 47 Just Axed The NSA & Cyber Command...
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
Scientists have fashioned the nanomaterial into microscopic balloons they say can distinguish between different kinds of these hard-to-detect noble gases, by measuring how long they take to escape through tiny perforations in the surface of the balloons.
Graphene has a lot of attractive properties for material scientists working to develop everything form next-gen computer chips, to advanced solar cells and more sensitive microphones. But the research team behind this new breakthrough, from Delft University of Technology and the University of Duisburg-Essen, looked to leverage two properties in particular.
At just one-atom thick, graphene is incredibly thin, but despite that is able to withstand large amounts of stress, which in the team's view makes it well suited to the job of filtering and detecting gases. While it is not permeable itself, the team addressed this by making perforations as small as 25 nanometers in bilayer graphene, which was used to create tiny balloons from which pressurized gases can escape.