>
2025-11-13 -- Stewart Rhodes - OathKeepers Relaunch & Wash. D.C. Rally - MP3&4
2025-11-13 — Ernest Hancock interviews Phranq Tamburri - Trump Report - MP3&4
38 Special vs. 380 ACP: Can They Be That Different?
UN Targets Homeschoolers Through "Human Rights" Scheme
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?

Scientists have fashioned the nanomaterial into microscopic balloons they say can distinguish between different kinds of these hard-to-detect noble gases, by measuring how long they take to escape through tiny perforations in the surface of the balloons.
Graphene has a lot of attractive properties for material scientists working to develop everything form next-gen computer chips, to advanced solar cells and more sensitive microphones. But the research team behind this new breakthrough, from Delft University of Technology and the University of Duisburg-Essen, looked to leverage two properties in particular.
At just one-atom thick, graphene is incredibly thin, but despite that is able to withstand large amounts of stress, which in the team's view makes it well suited to the job of filtering and detecting gases. While it is not permeable itself, the team addressed this by making perforations as small as 25 nanometers in bilayer graphene, which was used to create tiny balloons from which pressurized gases can escape.