>
40% of L.A. Firefighters Decline to Show Up for Coronavirus Vaccine
Brave New Dystopian World Unfolding
Fortress Washington Occupied and Militarized
Blasting Lies Ahead of Induction into the Hall of Infamy
Autonomous Flight unveils six-seat eVTOL tricopter air shuttle
Full Autonomous Self Driving Teslas in Vegas Boring Tunnels by the End of 2021
Fish-inspired robots coordinate movements without any outside control
The UK Is Developing Nuclear-Powered Space Exploration for Faster Mars Trips
GM Unveils Cadillac Flying Car For Rich People
Gigafactories With New Solar PV Module Tech Might Cause Solar Glut in 2021
Orbital Assembly Building Parts to Eventually Scale to Large Rotating Space Stations
GM Unveils Cadillac Flying Car For Rich People
How Phoenix Feeds The Hungry With Fresh Food While Saving Local Businesses and Farms
Oak Ridge Research Next Generation Cathode Free Lithium Ion Batteries
By achieving atomic resolution using cryogenic-electron microscopy (cryo-EM), researchers will be able to understand, in unprecedented detail, the workings of proteins that cannot easily be examined by other imaging techniques, such as X-ray crystallography.
Cryo-EM has been around for decades. It has long been able to determine the shape of flash-frozen samples by firing electrons at them and recording the resulting images. Advances in technology for detecting the ricocheting electrons and in image-analysis software catalyzed a 'resolution revolution' that started around 2013. This led to protein structures that were sharper than ever before — and nearly as good as those obtained from X-ray crystallography, an older technique that infers structures from diffraction patterns made by protein crystals when they are bombarded with X-rays.