>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Why? Stretching nanoscale samples changes their electronic and optical properties, which could open up a new world of diamond devices.
To say that diamond isn't very elastic is an understatement – while the stretchiest materials can reach tensile elastic strains of a few hundred percent, bulk diamond tops out at less than 0.4 percent.
On the nanoscale however, diamond theoretically should be capable of much higher elasticity. A few years ago, the City University team bent nanoscale needles of diamond to tensile elastic strains of about 9 percent.
In the new study, the team took things a step further. They made bridge-shaped samples of diamond about 1,000 nanometers long and 300 nm wide, and stretched them lengthways. Over a series of cycles, the diamond showed an elastic deformation of around 7.5 percent across the whole piece, before returning to its original shape once the pressure was off.
In follow-up tests, the researchers optimized the shape of the samples, and then managed to stretch the diamond even further – up to 9.7 percent. That, they say, is close to the theoretical elastic limit of diamond.
But the experiment wasn't just about stretching diamond for the sake of it – it could pave the way for new electronic components made of diamond. Applying that kind of strain can actually change some of the electronic and photonic properties of a material.
To find out how much by, the team simulated diamond's electronic properties under different levels of strain, between zero and 12 percent. They found that as the tensile strain increased, the diamond's bandgap decreased, essentially meaning it became more electrically conductive. It peaked at a 2 electronVolt drop when under about 9 percent strain. Using spectroscopy, the scientists verified this bandgap-decreasing trend in the diamond samples.