>
The 3 Reasons Behind US Plot to Depose Venezuela's Maduro – Video #254
Evangelicals and the Veneration of Israel
Zohran Mamdani's Socialist Recipe for Economic Destruction
BREAKING: Fed-Up Citizens Sue New York AG Letitia James for Voter Intimidation...
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...

The new class called NFA, which stands for nickel-, iron- and aluminum-based cathode, is a derivative of lithium nickelate and can be used to make the positive electrode of a lithium-ion battery. These novel cathodes are designed to be fast charging, energy dense, cost effective, and longer-lasting.
With the rise in the production of portable electronics and electric vehicles throughout the world, lithium-ion batteries are in high demand. According to Ilias Belharouak, ORNL's scientist leading the NFA research and development, more than 100 million electric vehicles are anticipated to be on the road by 2030. Cobalt is a metal currently needed for the cathode which makes up the significant portion of a lithium-ion battery's cost.
In recent years, cobalt has become a critical constraint on the supply chain of the Li?ion battery industry. With the ever?increasing projections for electric vehicles, the dependency of current Li?ion batteries on the ever?fluctuating cobalt prices poses serious environmental and sustainability issues. To address these challenges, a new class of cobalt?free materials with general formula of LiNixFeyAlzO2 (x + y + z = 1), termed as the lithium iron aluminum nickelate (NFA) class of cathodes, is introduced. These cobalt?free materials are synthesized using the sol–gel process to explore their compositional landscape by varying aluminum and iron. These NFA variants are characterized using electron microscopy, neutron and X?ray diffraction, and Mössbauer and X?ray photoelectron spectroscopy to investigate their morphological, physical, and crystal?structure properties. Operando experiments by X?ray diffraction, Mössbauer spectroscopy, and galvanostatic intermittent titration have been also used to study the crystallographic transitions, electrochemical activity, and Li?ion diffusivity upon lithium removal and uptake in the NFA cathodes. NFA compositions yield specific capacities of ≈200 mAh g−1, demonstrating reasonable rate capability and cycling stability with ≈80% capacity retention after 100 charge/discharge cycles. While this is an early stage of research, the potential that these cathodes could have as viable candidates in next?generation cobalt?free lithium?ion batteries is highlighted here.