>
Bitcoin Circular Economies and a Bridge Between Las Vegas and Peru
'Right of Return' for Israeli Child Predators Fleeing U.S.
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
Researchers at the Queensland University of Technology have added another hybrid supercapacitor design to the mix, promising the near-instant charge and discharge of a supercap with vastly improved energy storage on par with NiMH batteries.
The key concepts to understand here are energy density (Wh/kg), referring to the total amount of energy a device can store per weight, and power density (W/kg), referring to how quickly the device can move power in and out while charging and discharging.
Lithium batteries store energy in a chemical form, and are widely used because they offer a relatively high energy density, but as anyone who owns a smartphone or electric car knows, they charge fairly slowly. Supercapacitors, on the other hand, store energy statically rather than in a chemical form, meaning they can charge and discharge much, much faster without degrading their internal structures.