>
Episode 483 - Dissent Into Madness
Israel Placed Surveillance Devices Inside Secret Service Emergency Vehicles...
Here is the alleged partial chat log between Tyler Robinson and his trans lover...
MAJOR BREAKING: State Department & UN ties to Armed Queers SLC leader now confirmed
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Researchers at the Queensland University of Technology have added another hybrid supercapacitor design to the mix, promising the near-instant charge and discharge of a supercap with vastly improved energy storage on par with NiMH batteries.
The key concepts to understand here are energy density (Wh/kg), referring to the total amount of energy a device can store per weight, and power density (W/kg), referring to how quickly the device can move power in and out while charging and discharging.
Lithium batteries store energy in a chemical form, and are widely used because they offer a relatively high energy density, but as anyone who owns a smartphone or electric car knows, they charge fairly slowly. Supercapacitors, on the other hand, store energy statically rather than in a chemical form, meaning they can charge and discharge much, much faster without degrading their internal structures.