>
A $31 million Bitcoin donation to Silk Road founder Ross Ulbricht...
Joe Rogan Experience #2334 - Kash Patel
Trump announces trade agreement with China: 'We have the deal'
Stephen Miller goes scorched earth for Trump's BBB…
Hydrogen Gas Blend Will Reduce Power Plant's Emissions by 75% - as it Helps Power 6 States
The Rise & Fall of Dome Houses: Buckminster Fuller's Geodesic Domes & Dymaxion
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
This will allow more data to be stored and for that data to be read at a quicker rate. Rather than using the traditional dots and dashes as commonly used in these technologies, the Purdue innovators encode information in the angular position of tiny antennas, allowing them to store more data per unit area.
This technology can also be used for security tagging and cryptography.
Above – The proposed anisotropic metasurface from Purdue University innovators has significant potential for high-density optical data storage, dynamic color image display, and encryption.
"The storage capacity greatly increases because it is only defined by the resolution of the sensor by which you can determine the angular positions of antennas," said Alexander Kildishev, an associate professor of electrical and computer engineering in Purdue's College of Engineering. "We map the antenna angles into colors, and the colors are decoded."