>
Sunday FULL SHOW: Newly Released & Verified Epstein Files Confirm Globalists Engaged...
Fans Bash Bad Bunny's 'Boring' Super Bowl Halftime Show, Slam Spanish Language Performan
Trump Admin Refuses To Comply With Immigration Court Order
U.S. Government Takes Control of $400M in Bitcoin, Assets Tied to Helix Mixer
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

Cartilage covers the ends of the bones in joints such as our knees, letting them move smoothly against one another without wearing down the bone tissue underneath. It's made up of a porous matrix of collagen fibers, proteoglycan proteins, and elastin protein fibers. That matrix absorbs a viscous liquid known as synovial fluid, which is produced in the joints.
As the joint moves, the interfacing cartilage surfaces gradually release that fluid, providing lubrication. At the same time, the absorbed fluid also helps the cartilage to withstand being irreversibly deformed by compressive forces, thanks to a hydroelastic effect. And while researchers have previously tried to create artificial cartilage, they've typically used soft hydrogels that can't cope with such forces.