>
China Will Close the Semiconductor Gap After EUV Lithography Breakthrough
The Five Big Lies of Vaccinology
Large global study analyzing data from 192 countries has sparked intense debate by suggesting...
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China

Not this one out of Seattle, though. Jetoptera's J-2000 concept is a remarkably different take on the VTOL inter-city aircraft, designed to make use of the company's own unique propulsion system. Much like the bladeless fans popularized by Dyson, there are no spinning blades to be seen on Jetoptera's "fluidic propulsion systems (FPS)."
Mind you, as with the Dyson, there are most certainly spinning blades elsewhere in the system. Both devices rely on fluid dynamics to take a relatively small flow of compressed air, and use it to suck a much greater volume of ambient air through at speed. Sir James Dyson does a pretty good job of explaining it here in the context of his fan, which uses a small, quiet impeller to generate pressure around an aerodynamically shaped loop until it exits at high speed through a slit running around the ring.