>
Freedom Does Not Mean Appointing New Taskmasters
Freedom Does Not Mean Appointing New Taskmasters
For Elon Musk's DOGE to Succeed, He Needs Ron Paul
For Elon Musk's DOGE to Succeed, He Needs Ron Paul
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
In case you missed it, Ben Affleck just dropped the best talk on AI and where we're heading:
LG flexes its display muscle with stretchable micro-LED screen
LiFePO4 Charging Guidelines: What is 100%? What is 0%?! How to Balance??
Skynet On Wheels: Chinese Tech Firm Reveals Terrifying Robo-Dog
Energy company claims its new fusion technology can provide heat and power to 70,000 homes:
Tandem cells (combining silicon and perovskite nanocrystals) have a larger bandgap than silicon and capture more of the solar spectrum for energy generation.
Singlet fission produces twice the electronic charge carriers than normal for each photon of light that's absorbed. Tetracene is used in these devices to transfer the energy generated by singlet fission into silicon.
Abstract
The economic value of a photovoltaic installation depends upon both its lifespan and power conversion efficiency. Progress toward the latter includes mechanisms to circumvent the Shockley?Queisser limit, such as tandem designs and multiple exciton generation (MEG). Here we explain how both silicon tandem and MEG?enhanced silicon cell architectures result in lower cell operating temperatures, increasing the device lifetime compared to standard c?Si cells. Also demonstrated are further advantages from MEG enhanced silicon cells: (i) the device architecture can completely circumvent the need for current?matching; and (ii) upon degradation, tetracene, a candidate singlet fission (a form of MEG) material, is transparent to the solar spectrum. The combination of (i) and (ii) mean that the primary silicon device will continue to operate with reasonable efficiency even if the singlet fission layer degrades. The lifespan advantages of singlet fission enhanced silicon cells, from a module perspective, are compared favorably alongside the highly regarded perovskite/silicon tandem and conventional c?Si modules.