>
Father jumps overboard to save daughter after she fell from Disney Dream cruise ship
Terrifying new details emerge from Idaho shooting ambush after sniper-wielding gunman...
MSM Claims MAHA "Threatens To Set Women Back Decades"
Peter Thiel Warns: One-World Government A Greater Threat Than AI Or Climate Change
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
We've been following Nawa since 2018, when we first spoke to these guys about the potential benefits of using powerful ultracapacitors alongside energy-dense lithium batteries to extend the range and boost the peak power of electric vehicles.
The company wrapped the idea up into a futuristic-looking concept bike for CES 2020, and put some outrageous figures to its claims. Using a 9-kWh lithium battery, you would expect to get around 180 km (110 miles) of urban riding out of a full charge. The Nawa Racer proposed that adding a 0.1-kWh ultracapacitor to the system would boost that range up to around 300 km (180 miles), while unlocking some serious acceleration power to boot.
How? Well, ultracapacitors might not store much energy by weight or volume – indeed, the 0.1-kWh ultracapacitor is about as big as the entire 9-kWh battery on the racer – but they can charge and discharge much faster than lithium batteries. Nawa claims that battery-powered EVs are limited in their regenerative braking capabilities by the speed at which their batteries can receive charge, and that its ultracaps can do the job so much better that you can get radical leaps in urban range, as well as bonus boost power, for less than what it'd cost you to upsize the battery.
We keep stressing this is about urban range, because an ultracapacitor will do nothing to help your bike fight wind resistance for long stretches on the highway. This is all about start-stop use cases around town, where the capacitor can turn as much stop energy back into start energy as possible.
Now, we've had a couple of skeptics quietly question the validity of the Nawa Racer's claims off the record, saying that high-performance lithium batteries can accept charge quickly enough that you'd have to be braking pretty damn hard before the battery becomes a bottleneck and an ultracapacitor starts grabbing enough extra energy to make an appreciable difference in range.