>
OTOY | GTC 2023: The Future of Rendering
Humor: Absolutely fking hilarious. - Language warning not for children
President Trump's pick for Surgeon General Dr. Janette Nesheiwat is a COVID freak.
What Big Pharma, Your Government & The Mainstream Media didn't want you to know.
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Phase-change materials (PCMs) show promise for this, and now engineers at Texas A&M have developed a new PCM composite that can be 3D printed.
The name "phase-change materials" is pretty self-explanatory – these materials will switch between phases of matter as the temperature changes. One of the most promising applications for this technology is insulation: the PCM melts into a liquid as it absorbs heat, cooling its surroundings. As the ambient temperature cools, the material will solidify again, releasing its stored heat.
In the past, PCMs have been used in coffee cups to keep hot drinks hot, fabrics that keep wearers warm or cool as needed, liquid coatings that prevent frost build-up, and in building materials that better regulate indoor temperature. It's that last one that the researchers on the new study wanted to improve.
Previous PCMs have been rather inefficient and costly, because they need a shell to contain their liquid form. That means pellets of PCMs need to be embedded into a building material, but fewer of them can fit in that form, and it can be difficult to scale that production.
For the new study, the Texas A&M researchers looked to mix a PCM directly into a building material. They mixed paraffin wax, as the PCM, with liquid resin as the supporting structure, creating a soft, paste-like material that can be shaped as needed. Once it's in the desired shape, it can be cured with UV light to harden the resin.