>
Homan Seeks Cooperation In Minnesota: Vows 'Drawdown' On Streets In Exchange...
100% PROOF ILHAN OMAR FAKED ATTACK! MYSTERIOUS SUBSTANCE IDENTIFIED...
9 Best Survival Foods: What Preppers Keep in Their Pantry
Researchers who discovered the master switch that prevents the human immune system...
The day of the tactical laser weapon arrives
'ELITE': The Palantir App ICE Uses to Find Neighborhoods to Raid
Solar Just Took a Huge Leap Forward!- CallSun 215 Anti Shade Panel
XAI Grok 4.20 and OpenAI GPT 5.2 Are Solving Significant Previously Unsolved Math Proofs
Watch: World's fastest drone hits 408 mph to reclaim speed record
Ukrainian robot soldier holds off Russian forces by itself in six-week battle
NASA announces strongest evidence yet for ancient life on Mars
Caltech has successfully demonstrated wireless energy transfer...
The TZLA Plasma Files: The Secret Health Sovereignty Tech That Uncle Trump And The CIA Tried To Bury

Bacterial bioflms are made up of colonies of bacteria that stick together by building up a slimy polymer matrix. Unfortunately, topically applied antibiotics and other medications have difficulty penetrating that matrix, so they can't reach the infected tissue underneath.
As a result, doctors will often peel off the biofilms before treating the wounds. Not only is this painful to the patient, but some healthy tissue will often come off along with the biofilm, setting back the healing process. With these limitations in mind, scientists at Indiana's Purdue University have developed a biodegradable polymer composite patch with an array of tiny medication-laden "microneedle" studs on its underside.
When the patch is applied to a chronic wound, those microneedles penetrate the biofilm and absorb fluid from the tissue underneath. This causes them to harmlessly dissolve, releasing their medication into that tissue.