>
Why Trump Can't (or Won't) Abolish the IRS | Ryan McMaken
World's Most Detailed Brain Map Built From a Grain of Brain Tissue
Pardon Will Not Help Him: REPORT: Fauci just got hit with CRIMINAL referrals for murder, abuse...
The FBI Released the Crossfire Hurricane Files. 700 pages, unredacted.
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Bacterial bioflms are made up of colonies of bacteria that stick together by building up a slimy polymer matrix. Unfortunately, topically applied antibiotics and other medications have difficulty penetrating that matrix, so they can't reach the infected tissue underneath.
As a result, doctors will often peel off the biofilms before treating the wounds. Not only is this painful to the patient, but some healthy tissue will often come off along with the biofilm, setting back the healing process. With these limitations in mind, scientists at Indiana's Purdue University have developed a biodegradable polymer composite patch with an array of tiny medication-laden "microneedle" studs on its underside.
When the patch is applied to a chronic wound, those microneedles penetrate the biofilm and absorb fluid from the tissue underneath. This causes them to harmlessly dissolve, releasing their medication into that tissue.