>
The Fear-Mongering Rackets of the US National-Security State
Gen-Z flexes new-age political muscle in Nepal
Trump to sign EO directing investigation of 'crypto' debanking: report
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Bacterial bioflms are made up of colonies of bacteria that stick together by building up a slimy polymer matrix. Unfortunately, topically applied antibiotics and other medications have difficulty penetrating that matrix, so they can't reach the infected tissue underneath.
As a result, doctors will often peel off the biofilms before treating the wounds. Not only is this painful to the patient, but some healthy tissue will often come off along with the biofilm, setting back the healing process. With these limitations in mind, scientists at Indiana's Purdue University have developed a biodegradable polymer composite patch with an array of tiny medication-laden "microneedle" studs on its underside.
When the patch is applied to a chronic wound, those microneedles penetrate the biofilm and absorb fluid from the tissue underneath. This causes them to harmlessly dissolve, releasing their medication into that tissue.