>
IT BYPASSES THE RETINA. IT BYPASSES THE OPTIC NERVE. IT SENDS IMAGES STRAIGHT...
PROMOTING THE NATIONAL DEFENSE BY ENSURING AN ADEQUATE SUPPLY OF...
REAL-ID, Mail-Order CDLs, and America's CDL Free-for-All.
THE AGE OF DISCLOSURE IS HERE: President Trump's Plan To Release The Secret UFO Files...
New Spray-on Powder Instantly Seals Life-Threatening Wounds in Battle or During Disasters
AI-enhanced stethoscope excels at listening to our hearts
Flame-treated sunscreen keeps the zinc but cuts the smeary white look
Display hub adds three more screens powered through single USB port
We Finally Know How Fast The Tesla Semi Will Charge: Very, Very Fast
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year

A newly developed architecture places these two innovations within one device to form a solid-state battery that is safe, long-lasting and has the potential to store vast amounts of energy.
For many years, scientists have been allured by the game-changing energy density silicon promises next-generation batteries, but bringing it into the mix has its challenges. The idea is to incorporate or entirely replace the graphite used as the anode with silicon to potentially store as much as 10 times the lithium ions. The trouble is silicon causes the liquid electrolyte to quickly degrade and the battery to quickly fail, but the authors of this new study believe the solution may lie in using a solid-state electrolyte instead.