>
War Comes Closer: Senate OK's $40 Billion To Ukraine; NATO Pledges 'Open Ended' Support
Get Ready to Be Muzzled: The Coming War on So-Called Hate Speech
California Judge Strikes Down Law Forcing Companies To Appoint Women To Corporate Boards
Elon Musk's Twitter Detractors Were Subsidized With Millions In Taxpayer Dollars
World's First Vertiport For Flying Taxis Opens In UK
The World's First Flying Taxi Hub Takes Shape in the English Midlands
Elon Musk Gives Everyday Astronaut a SpaceX Starbase Tour
NEW StarLink Mesh Nodes | Starlink | Starlink 2022
Episode 5: What to do in a BOIL ADVISORY with your Berkey Filter
Harley-Davidson's Livewire announces second electric motorcycle
ColdQuanta Cold Atom Quantum Computer is Commercially Available
Styro Aircrete Garden Shed- Pouring and Packing the Walls
Watch: Autonomous Chinese Drone Swarm Flies Through Forest While Hunting For Humans
We test drove a solar powered car with 1000 miles range that never needs charging
A newly developed architecture places these two innovations within one device to form a solid-state battery that is safe, long-lasting and has the potential to store vast amounts of energy.
For many years, scientists have been allured by the game-changing energy density silicon promises next-generation batteries, but bringing it into the mix has its challenges. The idea is to incorporate or entirely replace the graphite used as the anode with silicon to potentially store as much as 10 times the lithium ions. The trouble is silicon causes the liquid electrolyte to quickly degrade and the battery to quickly fail, but the authors of this new study believe the solution may lie in using a solid-state electrolyte instead.