>
As Trump sets eyes on Greenland, Europe scrambles to make plan to tackle US aggression
Corporation for Public Broadcasting votes itself out of existence
John Leake on Vaccines: The Demonic Rituals to Replicate God and Mankind's New Religion...
US Farmers Began Using Chemical Fertilizer After WW2. Comfrey Is a Natural Super Fertilizer
The First Production All-Solid-State Battery Is Here, And It Promises 5-Minute Charging
See inside the tech-topia cities billionaires are betting big on developing...
Storage doesn't get much cheaper than this
Laser weapons go mobile on US Army small vehicles
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies

They work at room temperature, undercutting and outperforming today's huge, cryo-cooled quantum supercomputers, and soon they'll be small enough for mobile devices.
Superconducting quantum computers are huge and incredibly finicky machines at this point. They need to be isolated from anything that might knock an electron's spin off and ruin a calculation. That includes mechanical isolation, in extreme vacuum chambers, where only a few molecules might remain in a cubic meter or two of space. It includes electromagnetic forces – IBM, for example, surrounds its precious quantum bits, or qubits, with mu metals to absorb all magnetic fields.
They work at room temperature, undercutting and outperforming today's huge, cryo-cooled quantum supercomputers, and soon they'll be small enough for mobile devices.
Superconducting quantum computers are huge and incredibly finicky machines at this point. They need to be isolated from anything that might knock an electron's spin off and ruin a calculation. That includes mechanical isolation, in extreme vacuum chambers, where only a few molecules might remain in a cubic meter or two of space. It includes electromagnetic forces – IBM, for example, surrounds its precious quantum bits, or qubits, with mu metals to absorb all magnetic fields.