>
Victor Davis Hanson: What the Media Won't Tell You About John Bolton FBI Raid
Giving Ukraine a US Security Guarantee Risks National Suicide
The Oklahoma City Bombing: A Lesson in Government Lawlessness
The Insurrection Act – Can the POTUS Deploy the National Guard to America's Cities?
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
That means they'll need to charge up in little more time than it takes to get passengers and luggage on and off.
This is going to require some extraordinary chargers – not to mention battery packs that can take the stress of ultra-fast charging. So German eVTOL company Lilium has teamed up with Swedish/Swiss multinational giant ABB on a monster charging system designed to blast-charge batteries and ensure quick turnaround.
True to its name, the MegaWatt system will push up to a full thousand kilowatts of power DC. Lilium says this will give its aircraft a full 0-100 percent charge in around 30 minutes, or a quick 0-80 percent charge in just 15 minutes. This, combined with the 7-seat air taxi's projected range of 155 miles (250 km) and cruise speed around 175 mph (282 km/h), will allow each aircraft to make between 20 and 25 flights per day.
The MegaWatt Charging System (MCS) is a new standard under development specifically targeted at large electric vehicles like trucks, buses, municipal and commercial vehicles. With a single hand-held cable and plug, it'll push maximum voltages up to 1,500 V, and maximum currents up to 3,000 A – so it theoretically supports charging at up to 4.5 megawatts. How exactly that works without causing the lights to go out in several nearby suburbs will be interesting to learn.
A significant number of major transport industry players are on board with this project, and as such, the system developed by Lilium and ABB will be compatible with a range of other heavy vehicles – not that we'd expect them to come cruising past a Lilium vertiport hoping for a top up.
ABB has considerable form in this arena; it's already rolling out the world's fastest commercially-available chargers for regular EVs: the 360-kilowatt Terra 360.