>
Mistrusting Government about Epstein and More
ChatGPT is BS (Dr. Berg Proves It)
Priced OUT OF PIZZA - The NEW ECONOMIC REALITY…
Trump Digs Deeper Into Ukraine War!
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
There does not seem to be a limit for neural nets to utilize more resources to get better and faster results.
Tesla is motivated to develop bigger, faster computers that are precisely suited to their needs.
The Google TPU architecture has not evolved as much over the last 5 years. The Google TPU chip is designed for the problems that Google runs. They are not optimized for training AI.
Tesla has rethought the problem of AI training and designed the Dojo AI supercomputer to optimally solve their problems.
If Tesla commercializes the AI supercomputer that will help to get to lower costs and greater power with more economies of scale.
One of the reasons that TSMC overtook Intel was that TSMC was making most of the ARM chips for cellphones. TSMC having more volume let them learn faster and drive down costs and accelerate technology.
99% of what neural network nodes do are 8 by 8 matrix multiply and 1% that is more like a general computer. Tesla created a superscalar GPU to optimize for this compute load.