>
Freedom Does Not Mean Appointing New Taskmasters
For Elon Musk's DOGE to Succeed, He Needs Ron Paul
Feds Suspend Unconstitutional Search Program After Getting Caught on Video
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
In case you missed it, Ben Affleck just dropped the best talk on AI and where we're heading:
LG flexes its display muscle with stretchable micro-LED screen
LiFePO4 Charging Guidelines: What is 100%? What is 0%?! How to Balance??
Skynet On Wheels: Chinese Tech Firm Reveals Terrifying Robo-Dog
Energy company claims its new fusion technology can provide heat and power to 70,000 homes:
A new switchable window material, however, blocks incoming heat while remaining mostly transparent.
First of all, there are already windows with electrochromic glass, that electronically tints on demand. As the glass gets darker, though, it gets harder to see through. Additionally, although such windows do partially block the visible spectrum of sunlight, they don't necessarily block the infrared spectrum, which produces the heat.
That's where the new material comes in.
Developed by scientists at Singapore's Nanyang Technological University and Israel's Hebrew University of Jerusalem, it consists of an inexpensive mixture of titanium dioxide, tungsten trioxide, neodymium-Niobium and tin oxide. This is applied as a coating to ordinary window pane glass, and connected to an electrical circuit.
When the extra heat provided by the sunlight is wanted, such as during the winter months, the material is left switched off. This allows all of the sunlight's infrared radiation to pass through. During warmer months, however, the power is switched on – simulations have indicated that the material will then block up to 70 percent of the incoming infrared radiation, while still allowing up to 90 percent of the sun's visible light to pass through.
Additionally, whereas existing electrochromic windows reportedly start losing their functionality after three to five years of use, tests involving repeated on/off cycles have shown that the new material should last much longer.
What's more, windows incorporating the technology could also be coated with an electronically switchable film created by the same team, which uses carbon nanoparticles to either conduct or block the passage of ambient heat from the outdoor environment.