>
Eudaimonia: That Perfect Instant While Pedaling Your Bicycle
CHEMTRAIL WARFARE: Tom Renz Exposes the Military's SECRET Chemical Attacks on Americans
Founder Klaus Schwab to step down as World Economic Forum's chair
POWERFUL FRIDAY BROADCAST: Trump Goes On Total Warpath! 47 Just Axed The NSA & Cyber Command...
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
A new switchable window material, however, blocks incoming heat while remaining mostly transparent.
First of all, there are already windows with electrochromic glass, that electronically tints on demand. As the glass gets darker, though, it gets harder to see through. Additionally, although such windows do partially block the visible spectrum of sunlight, they don't necessarily block the infrared spectrum, which produces the heat.
That's where the new material comes in.
Developed by scientists at Singapore's Nanyang Technological University and Israel's Hebrew University of Jerusalem, it consists of an inexpensive mixture of titanium dioxide, tungsten trioxide, neodymium-Niobium and tin oxide. This is applied as a coating to ordinary window pane glass, and connected to an electrical circuit.
When the extra heat provided by the sunlight is wanted, such as during the winter months, the material is left switched off. This allows all of the sunlight's infrared radiation to pass through. During warmer months, however, the power is switched on – simulations have indicated that the material will then block up to 70 percent of the incoming infrared radiation, while still allowing up to 90 percent of the sun's visible light to pass through.
Additionally, whereas existing electrochromic windows reportedly start losing their functionality after three to five years of use, tests involving repeated on/off cycles have shown that the new material should last much longer.
What's more, windows incorporating the technology could also be coated with an electronically switchable film created by the same team, which uses carbon nanoparticles to either conduct or block the passage of ambient heat from the outdoor environment.