>
Masked Muslim youths take to east London streets to 'defend our community' after police bann
Why Owning Gold and Silver Is More Critical Than Ever
Redfin, Realtor, Reality: Signs of a Housing Shift
China's $2.6b Belt and Road Battery project in Australia paid for by our taxpayers
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them
China Innovates: Transforming Sand into Paper
Millions Of America's Teens Are Being Seduced By AI Chatbots
Transhumanist Scientists Create Embryos From Skin Cells And Sperm

On Aug. 8, 2021, an experiment at Lawrence Livermore National Laboratory (LLNL) made a significant step toward ignition, achieving a yield of more than 1.3 megajoules. Researchers said this advancement puts them at the threshold of fusion ignition, which is defined as a sustainable and never-ending powerful energy source.
The experiment was enabled by focusing laser light—the size of three football fields—onto a target which is the size of a BB that produces a hot-spot the diameter of a human hair, generating more than 10 quadrillion watts of fusion power for 100 trillionths of a second.
"These extraordinary results advance the science," said Jill Hruby, DOE under secretary for Nuclear Security and administrator of the National Nuclear Security Administration.
Experiments in pursuit of fusion ignition are important for providing data in an experimental regime that is extremely difficult, and is an important gateway to enable access to high fusion yields in the future.
While a full scientific interpretation of these results will occur through the peer-reviewed journal/conference process, initial analysis shows an 8X improvement over experiments conducted in spring 2021 and a 25X increase over NIF's 2018 record yield. It also marked the first time the output exceeded the energy absorbed by the fuel used to trigger it, according to Science Alert.
"This result is a testament to the innovation, ingenuity, commitment and grit of this team and the many researchers in this field over the decades who have steadfastly pursued this goal," said LLNL Director Kim Budil. "For me it demonstrates one of the most important roles of the national labs – our relentless commitment to tackling the biggest and most important scientific grand challenges and finding solutions where others might be dissuaded by the obstacles."