>
Father jumps overboard to save daughter after she fell from Disney Dream cruise ship
Terrifying new details emerge from Idaho shooting ambush after sniper-wielding gunman...
MSM Claims MAHA "Threatens To Set Women Back Decades"
Peter Thiel Warns: One-World Government A Greater Threat Than AI Or Climate Change
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
On Aug. 8, 2021, an experiment at Lawrence Livermore National Laboratory (LLNL) made a significant step toward ignition, achieving a yield of more than 1.3 megajoules. Researchers said this advancement puts them at the threshold of fusion ignition, which is defined as a sustainable and never-ending powerful energy source.
The experiment was enabled by focusing laser light—the size of three football fields—onto a target which is the size of a BB that produces a hot-spot the diameter of a human hair, generating more than 10 quadrillion watts of fusion power for 100 trillionths of a second.
"These extraordinary results advance the science," said Jill Hruby, DOE under secretary for Nuclear Security and administrator of the National Nuclear Security Administration.
Experiments in pursuit of fusion ignition are important for providing data in an experimental regime that is extremely difficult, and is an important gateway to enable access to high fusion yields in the future.
While a full scientific interpretation of these results will occur through the peer-reviewed journal/conference process, initial analysis shows an 8X improvement over experiments conducted in spring 2021 and a 25X increase over NIF's 2018 record yield. It also marked the first time the output exceeded the energy absorbed by the fuel used to trigger it, according to Science Alert.
"This result is a testament to the innovation, ingenuity, commitment and grit of this team and the many researchers in this field over the decades who have steadfastly pursued this goal," said LLNL Director Kim Budil. "For me it demonstrates one of the most important roles of the national labs – our relentless commitment to tackling the biggest and most important scientific grand challenges and finding solutions where others might be dissuaded by the obstacles."