>
Attend Ian Freeman's Appellate Court Hearing; Wednesday, February 5th, 9:30am (Boston, MA)
Dear RFK, Jr. and Del Bigtree: Why Not Start at the Foundation?
Biden Moves to Permanently Ban Offshore Oil and Gas Drilling...
Is Taurine The Elixir Of Life? Considerations For Supplementation
DMSO Transforms The Treatment of Infectious Diseases
Quantum teleportation has begun to change the world
Forget About Raspberry Pi! Use Your Old Phone Instead. (Really???)
7 Electric Aircraft That Will Shape the Future of Flying
Virginia's fusion power plant: A step toward infinite energy
Help us take the next step: Invest in Our Vision for a Sustainable, Right-to-Repair Future
Watch: Jetson founder tests the air for future eVTOL racing
"I am Exposing the Whole Damn Thing!" (MIND BLOWING!!!!) | Randall Carlson
Researchers reveal how humans could regenerate lost body parts
Engineers at the University of Wisconsin–Madison have now forged a new type of ultralight armor material described as a "nanofiber mat," which features a unique chemistry that enables it to outperform Kevlar and steel.
The basis for this new form of armor are tiny cylinders of carbon with the thickness of a single atom. Called carbon nanotubes, these have shown promise as next-generation materials for everything from transistor research, to treating vision loss, to bomb detection devices.
In adapting carbon nanotubes for use in armor materials, the authors of this new study took multi-walled versions of them and combined them with Kevlar nanofibers. The idea was to build on earlier research demonstrating the potential of these materials in absorbing impacts, to see if they couldn't be fashioned into an even more functional armor solution.
"Nano-fibrous materials are very attractive for protective applications because nanoscale fibers have outstanding strength, toughness, and stiffness compared to macroscale fibers," said Ramathasan Thevamaran, who led the research. "Carbon nanotube mats have shown the best energy absorption so far, and we wanted to see if we could further improve their performance."
To do so, the scientists tinkered with the chemistry until they landed on the winning recipe. They synthesized Kevlar nanofibers and incorporated just a small amount of them into "mats" made up of carbon nanotubes, with just the right ratio of both, which led to the production of hydrogen bonds between the fibers. The result of these bonds was a dramatic leap in performance.