>
CHEMTRAIL WARFARE: Tom Renz Exposes the Military's SECRET Chemical Attacks on Americans
Founder Klaus Schwab to step down as World Economic Forum's chair
POWERFUL FRIDAY BROADCAST: Trump Goes On Total Warpath! 47 Just Axed The NSA & Cyber Command...
Trump Extends TikTok Deadline By 75 Days As Trade War With Beijing Erupts
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
These tiny grids of "nano-housing" create the optimal environment to not just foster the rapid growth of these bacteria, but take their energy-harvesting potential to new heights.
Also known as cyanobacteria or perhaps more familiarly, blue-green algae, photosynthetic bacteria can be found in all types of water, where they use sunlight to make their own food. Their natural proficiency at this task has inspired many promising avenues of research into renewable energy, from bionic mushrooms that generate electricity, to algae-fueled bioreactors that soak up carbon dioxide, to self-contained solutions that offer a blueprint for commercial artificial photosynthesis systems.
Cyanobacteria thrive in environments like lake surfaces as they require lots of sunlight to grow, and a team at the University of Cambridge has made a breakthrough that came about by experimenting with ways to better satisfy these needs. Another thing for the team to consider was that to gather any of the energy they produce through photosynthesis, the bacteria need to be attached to electrodes. By crafting electrodes that also promote the growth of the bacteria, the scientists are effectively trying to kill two birds with one stone.
"There's been a bottleneck in terms of how much energy you can actually extract from photosynthetic systems, but no one understood where the bottleneck was," said Dr Jenny Zhang, who led the research. "Most scientists assumed that the bottleneck was on the biological side, in the bacteria, but we've found that a substantial bottleneck is actually on the material side."