>
Dem. Senator Alex Padilla Forcibly Arrested For Rushing DHS Sec. Kristi Noem During Press Briefing
BREAKING: ISRAEL STRIKES IRAN! - Global Economy Will Be Crushed! - Massive Implications!
Did President Trump Really Reverse His Mass Deportation Stance?
Bilderberg 2025 Day 1 Begins with Press For Truth!!
Hydrogen Gas Blend Will Reduce Power Plant's Emissions by 75% - as it Helps Power 6 States
The Rise & Fall of Dome Houses: Buckminster Fuller's Geodesic Domes & Dymaxion
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
Unlocking these discoveries will enable us to better understand Earth and the formation and evolution of our solar system and countless others. However, due to the high cost and production scaling difficulty, outer solar system exploration has been extremely limited: celestial bodies beyond Saturn have been visited only once in more than 60 years of space exploration. Furthermore, long travel time scales up mission complexity by adding to operations cost, the need for expertise retention over the mission lifetime, and the chance of hardware failures in the harsh space environment.
Solar sails may offer a drastically new approach for deep space exploration paving the way to low cost and fast-transit missions. Recent studies, including NIAC studies, indicate that solar sails can reach over 10 AU/year which would allow us to reach Uranus in less than 2 years and Neptune in less than 3 years, unprecedented with today's propulsion technology. Nevertheless, owing to very stringent mass requirement, solar sails have limited capability for science payloads when compared to flagship class mission spacecraft.
Here, researchers propose a ScienceCraft – a game changing mission concept that integrates a science instrument and spacecraft into one monolithic structure. By printing a quantum dot-based spectrometer, developed by the PI Sultana (ROSES), directly on the solar sail material, developed by CoI Davoyan, they would create a breakthrough spacecraft architecture allowing an unprecedented parallelism and throughput of data collection, and rapid travel across the solar system. Unlike conventional solar sails that serve only to propel small cubesats, ScienceCraft puts its vast area at use for spectroscopy, pushing the boundary of scientific exploration of outer solar system. ScienceCraft offers an attractive low resource platform that can enable science missions at a significantly lower cost and provide a large number of launch opportunities as a secondary payload. Several ScienceCraft working synchronously would be capable of reaching Neptune-Triton system in just a few years and enable acquisition of large amounts of data.