>
Still No Justice for COVID Nursing Home Deaths
How To Make A FREE Drip Irrigation System With An Old 5 Gallon Bucket
Homemade LMNT Electrolyte Drink | ACTUALLY Hydrate Yourself!
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
These cells functioned like cells 30 years younger, but in what represents an exciting advance in the field, were able to still retain some of their specialized functions acquired through age.
In 2012, Japanese researcher Shinya Yamanaka earned a Nobel Prize for his work in developing what are known as induced pluripotent stem cells (iPSCs). These start out as regular adult tissue cells that are harvested and exposed to four molecules called Yamanaka factors, which return them to an immature state. From here, the stem cells can theoretically develop into any cell type in the body.
We've seen scientists explore this potential in a number of exciting ways, implanting them in rabbits to restore vision, addressing dopamine deficiencies in animal models of Parkinson's disease and repairing damaged heart muscles in pigs. The full reprogramming process involves subjecting the cells to the Yamanaka factors for around 50 days, but the Babraham scientists have found that shortening this process might bring some significant benefits to the table.
When the cells undergo full reprogramming, they forego some of the specialized capabilities they've developed through maturation. In the case of skin cells this includes producing collagen for use in tendons, ligaments, bones and to aid in wound healing. The idea was to restore these cells to a youthful state, but not erase their identity entirely.
Called "maturation phase transient reprogramming," the team's new technique exposes the cells to the Yamanaka factors for only 13 days. This was found to remove the age-related changes and erase their identity, but only temporarily. Allowed to grow under natural conditions, these rejuvenated cells again took on the characteristics of skin cells, but with a fresh outlook on life.