>
War on Words: Both Parties Try to Silence Speech They Don't Like
Low Interest Rates Don't Have the Stimulus the Economy Craves
"What's About To Happen Is Not A Coincidence" | Whitney Webb
Future of Satellite of Direct to Cellphone
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
These cells functioned like cells 30 years younger, but in what represents an exciting advance in the field, were able to still retain some of their specialized functions acquired through age.
In 2012, Japanese researcher Shinya Yamanaka earned a Nobel Prize for his work in developing what are known as induced pluripotent stem cells (iPSCs). These start out as regular adult tissue cells that are harvested and exposed to four molecules called Yamanaka factors, which return them to an immature state. From here, the stem cells can theoretically develop into any cell type in the body.
We've seen scientists explore this potential in a number of exciting ways, implanting them in rabbits to restore vision, addressing dopamine deficiencies in animal models of Parkinson's disease and repairing damaged heart muscles in pigs. The full reprogramming process involves subjecting the cells to the Yamanaka factors for around 50 days, but the Babraham scientists have found that shortening this process might bring some significant benefits to the table.
When the cells undergo full reprogramming, they forego some of the specialized capabilities they've developed through maturation. In the case of skin cells this includes producing collagen for use in tendons, ligaments, bones and to aid in wound healing. The idea was to restore these cells to a youthful state, but not erase their identity entirely.
Called "maturation phase transient reprogramming," the team's new technique exposes the cells to the Yamanaka factors for only 13 days. This was found to remove the age-related changes and erase their identity, but only temporarily. Allowed to grow under natural conditions, these rejuvenated cells again took on the characteristics of skin cells, but with a fresh outlook on life.