>
SpaceX Starship HeatShield Solution
One Million Signatures For French Immigration Referendum
Man Faces Potential Attempted Murder Charge In France After Stabbing Home Intruder
Report: Older Man Initially Arrested After Kirk Shooting Confessed to Distracting Police...
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
A shallow depth of field, for example, would keep the subject sharp but blur out much of the foreground and background. Now, researchers at the National Institute of Standards and Technology have taken inspiration from ancient trilobytes to demonstrate a new light field camera with the deepest depth of field ever recorded.
Trilobytes swarmed the oceans about half a billion years ago, distant cousins of today's horseshoe crabs. Their visual systems were quite complex, including compound eyes, featuring anywhere between tens and thousands of tiny independent units, each with its own cornea, lens and photoreceptor cells.
One trilobyte in particular, Dalmanitina socialis, captured the attention of NIST researchers due to its unique compound eye structure. Fossil record examination indicates that this little guy had double-layer lenses throughout its visual system, unlike anything else in today's arthropod kingdom, and that the upper layers of these lenses had a bulge in the middle that created a second point of focus. That meant Dalmanitina socialis was able to focus both on the prey right in front of it and the predators that might be approaching from farther off.
The research team decided to see whether it could apply this kind of idea to a light field camera. Where regular cameras basically take in light and record color and luminance information across a two-dimensional grid, light field cameras are much more complex, encoding not just color and luminance, but the direction of each ray of light that enters the sensor.