>
Will the Next First Turning Be to Technocracy?
Business Insider: Factcheck Your AI Stories Or Else
BREAKING EXCLUSIVE: Judge Delays Tina Peters Justice, Orders Colorado AG to Answer...
"This Individual Needs To Be Investigated!" Alex Jones Responds To Deranged Leftist Destin
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
They show :
before 2010 training compute grew in line with Moore's law, doubling roughly every 20 months.
Deep Learning started in the early 2010s and the scaling of training compute has accelerated, doubling approximately every 6 months.
In late 2015, a new trend emerged as firms developed large-scale ML models with 10 to 100-fold larger requirements in training compute.
Based on these observations they split the history of compute in ML into three eras: the Pre Deep Learning Era, the Deep Learning Era and the Large-Scale Era . Overall, the work highlights the fast-growing compute requirements for training advanced ML systems.
They have detailed investigation into the compute demand of milestone ML models over time. They make the following contributions:
1. They curate a dataset of 123 milestone Machine Learning systems, annotated with the compute it took to train them.