>
HERE WE GO: Massie Says He Has a "Vote Bloc of 10" Republican Lawmakers Who Are No's o
Ratcliffe Declassifies CIA Documents – Reveals Comey, Brennan, and Clapper Purposely...
BREAKING UPDATE: House Advances Trump's Big Beautiful Bill – 219-213
'Maga Mark' Zuckerberg unceremoniously kicked out of Oval Office after White House tour
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Above-An illustration of the device, which consists of two superconducting circuits: a cold high frequency circuit (in blue) and a hot low frequency circuit (in red). Here, the current that flows in the red circuit generates an oscillating magnetic field which leads to the photon-pressure coupling. By sending in a strong signal to the blue high-frequency circuit, this one is transformed into an amplifier capable of detecting radio-frequency photons flowing in the red circuit with much higher sensitivity.
A quantum heat pump
The device, known as a photon pressure circuit, is made from superconducting inductors and capacitors on a silicon chip cooled to only a few millidegrees above absolute zero temperature. While this sounds very cold, for some of photons in the circuit, this temperature is very hot, and they are excited with thermal energy. Using photon pressure, the researchers can couple these excited photons to higher frequency cold photons, which in previous experiments allowed them to cool the hot photons into their quantum ground state.