>
Conservatives Warn Against 'Woke' Trump Nominee Who Backed DEI, Covid 'Wellbeing Checks&
Google Exits EU's Voluntary Anti-"Disinformation" Code, Defying Digital Services Act..
VIDEO: The Private Federal Reserve Has Declared War on President Trump's Economic Recovery...
Elon Musk drops shocking detail into his influence over Trump as First Buddy lobbies for...
This is NOT CGI or AI-generated video. It's 100% real!
Nearly two years ago, James Gerde shared a video of Hercules dancing...
Ultrasound that allows you to feel virtual objects.
$35 lens turns any smartphone into a powerful microscope
Robotic sea turtle could soon be swimming in an ocean near you
There's Now a 1,000 Horsepower Electric Motor Based on a Motorcycle Motor
Chinese Robot: 500 Trillion Operations Per Second?
Starship Flight Test 7 -- Far Beyond What We Imagined
Deep Fission Nuclear to Power 2 Gigawatts of AI Data Centers
Chemical engineer Kevin Sivula and his team have made a significant step towards bringing this vision closer to reality by developing an ingenious yet simple system.
It combines semiconductor-based technology with novel electrodes that have two key characteristics: they are porous, to maximize contact with water in the air; and transparent, to maximize sunlight exposure of the semiconductor coating.
When the device is simply exposed to sunlight, it takes water from the air and produces hydrogen gas, which can then be injected into trucks, trains, or planes with hydrogen fuel cell batteries for green combustion.
In their research for renewable fossil-free fuels, engineers at the Federal Polytechnic School at Lausanne, in collaboration with Toyota Motor Europe, took inspiration from the way plants are able to convert sunlight into chemical energy using carbon dioxide from the air.
A plant essentially harvests carbon dioxide and water from its environment, and with the extra boost of energy from sunlight, can transform these molecules into sugars and starches, a process known as photosynthesis.
"Developing our prototype device was challenging since transparent gas-diffusion electrodes have not been previously demonstrated, and we had to develop new procedures for each step," said Marina Caretti, lead author of the work.
"However, since each step is relatively simple and scalable, I think that our approach will open new horizons for a wide range of applications starting from gas diffusion substrates for solar-driven hydrogen production."
Coating a silicon oxide felt wafer with a transparent thin film of fluorine-doped tin oxide, resulted in a a transparent, porous, and conducting wafer, essential for maximizing contact with the water molecules in the air and letting photons through. A second transparent coating of semiconductor materials absorbs sunlight, and completes the process.