>
Now that the U.S military has stolen $17 trillion worth of oil from Venezuela...
10 Coolest Tech at CES 2026 (Day 1)
UAE cuts funds for citizens keen to study in UK over Muslim Brotherhood tensions
A potential Rio Tinto-Glencore mega-merger would represent far more than a corporate consolidation
World's most powerful hypergravity machine is 1,900X stronger than Earth
New battery idea gets lots of power out of unusual sulfur chemistry
Anti-Aging Drug Regrows Knee Cartilage in Major Breakthrough That Could End Knee Replacements
Scientists say recent advances in Quantum Entanglement...
Solid-State Batteries Are In 'Trailblazer' Mode. What's Holding Them Up?
US Farmers Began Using Chemical Fertilizer After WW2. Comfrey Is a Natural Super Fertilizer
Kawasaki's four-legged robot-horse vehicle is going into production
The First Production All-Solid-State Battery Is Here, And It Promises 5-Minute Charging
See inside the tech-topia cities billionaires are betting big on developing...

While trying to figure out if it were possible to extract electrons from a known process in the early stages of photosynthesis, the scientists instead found an entirely-new electron transfer pathway, which for those who remember their biology 101, is the metabolic method that extracts the most energy from food.
The study's authors believe this new understanding of photosynthesis could create new and more efficient ways of harnessing the process's power to generate biofuels.
The research team, comprised of scientists from across the globe, first set out to understand why a ring-shaped molecule called a 'quinone' is able to steal electrons from the photosynthetic process
Quinones, which are common in nature, are able to easily accept and give away electrons.