>
Leftist Ghouls Celebrate Texas Flooding That Killed 32 People, Including 14 Christian Children
Elon Musk Formally Announces Launch of New Political Movement: "The American Party"
WILD: Over the Past 24 Hours Eight Dormant Bitcoin Wallets Were Awakened for First Time in 14...
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Inspired by the way young hearts heal themselves, researchers have now found a way to transmute scar tissue into healthy tissue in mice, thereby walking back some of the damage brought about by heart attacks.
In the United States alone, someone has a heart attack every 40 seconds, which means finding a way to prevent and minimize the damage from these cardiac events is a major priority for scientists. While plenty of research goes into preventing heart attacks, we're now seeing investigations into how to repair the heart after it suffers damage, particularly the scar tissue that forms after a heart attack. That's because left-behind scar tissue is more rigid than healthy heart tissue. Because it flexes less, it can restrict the heart's proper functioning and lead to future complications.
Earlier this year, researchers in Australia found a way to combat heart scarring in rats by boosting elastin, a substance that gives some body tissues their stretchy qualities. In that study, the heart scars shrank and became more flexible, restoring the heart to near its normal function.
The new study was carried out by researchers at Duke University (DU), who looked to the function of fibroblasts, cells involved in forming both connective and scar tissue. Their plan was to use a process involving RNA called cellular reprogramming, that would convert fibroblasts back into healthy heart tissue following a heart attack. The technique has previously been studied not only with regard to heart repair efforts, but for restoring motor function in stroke victims, wound repair and more.