>
Putin Calls Up 160,000 Men to Russian Army in Latest Conscription Drive, at Crucial Moment...
ELECTION FRAUD AGAIN: Liberal Susan Crawford did not win the election last night.
NATO WENT EVIL IN THE EU: Marine Le Pen, the NATO op to get her, the context around it...
The DOGE of War: TOP 10 MEMES – Watch MAGA
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
Inspired by the way young hearts heal themselves, researchers have now found a way to transmute scar tissue into healthy tissue in mice, thereby walking back some of the damage brought about by heart attacks.
In the United States alone, someone has a heart attack every 40 seconds, which means finding a way to prevent and minimize the damage from these cardiac events is a major priority for scientists. While plenty of research goes into preventing heart attacks, we're now seeing investigations into how to repair the heart after it suffers damage, particularly the scar tissue that forms after a heart attack. That's because left-behind scar tissue is more rigid than healthy heart tissue. Because it flexes less, it can restrict the heart's proper functioning and lead to future complications.
Earlier this year, researchers in Australia found a way to combat heart scarring in rats by boosting elastin, a substance that gives some body tissues their stretchy qualities. In that study, the heart scars shrank and became more flexible, restoring the heart to near its normal function.
The new study was carried out by researchers at Duke University (DU), who looked to the function of fibroblasts, cells involved in forming both connective and scar tissue. Their plan was to use a process involving RNA called cellular reprogramming, that would convert fibroblasts back into healthy heart tissue following a heart attack. The technique has previously been studied not only with regard to heart repair efforts, but for restoring motor function in stroke victims, wound repair and more.